Elastic Deformation in Ceria Nanorods via a Fluorite-to-Rutile Phase Transition

dc.contributor.authorSayle, T.X.T.-
dc.contributor.authorSayle, D.C.-
dc.date.accessioned2011-03-10T23:01:24Z
dc.date.available2011-03-10T23:01:24Z
dc.date.issued2010-02-28T00:00:00Z-
dc.description.abstractAtomistic simulations reveal that ceria nanorods, under uniaxial tension, can accommodate over 6% elastic deformation. Moreover, a reversible fluorite-to- rutile phase change occurs above 6% strain for a ceria nanorod that extends along [110]. We also observe that during unloading the stress increases with decreasing strain as the rutile reverts back to fluorite. Ceria nanorods may find possible application as vehicles for elastic energy storage.en_UK
dc.identifier.issn1936-0851-
dc.identifier.urihttp://dx.doi.org/10.1021/nn901612s-
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/4941
dc.language.isoen_UKen_UK
dc.publisherAmerican Chemical Societyen_UK
dc.subjectatomistic simulation microstructure molecular dynamics nanoenergy storage stabilized zirconia molecular-dynamics low-temperature nanoparticles nanowires nanotubes strength stress models strainen_UK
dc.titleElastic Deformation in Ceria Nanorods via a Fluorite-to-Rutile Phase Transitionen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manuscript CeO2 Nanowire.pdf
Size:
13.69 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
41 B
Format:
Plain Text
Description: