Monitoring sand particle concentration in multiphase flow using acoustic emission technology

dc.contributor.advisorMba, David
dc.contributor.authorEl-Alej, Mohamed Essid
dc.date.accessioned2014-06-04T13:29:05Z
dc.date.available2014-06-04T13:29:05Z
dc.date.issued2014-01
dc.description.abstractMultiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of production time. Build-up of sand in the system can result in blockage and further hamper production. Monitoring of multiphase flow is a process that has been established over several decades. This thesis reports an assessment of the application of Acoustic Emission (AE) technology as an alternative online technique to monitoring of sand particles under multiphase flow conditions in a horizontal pipe. The research was conducted on a purpose built test rig with the purpose of establishing a relation between AE activity and sand concentration under different multiphase flow conditions. The investigation consisted of five experimental tests. The initial experiment was performed to provide a basis for the application of AE technology to detect sand particle impact prior to performing tests in multiphase flow conditions. Further investigations are reported on two phase air-sand, water-sand and air- water-sand three-phase flows in a horizontal pipe for different superficial gas velocities (VSG), superficial liquid velocities (VSL) and sand concentrations (SC). The experimental findings clearly showed a correlation exists between AE energy levels and multiphase flow parameters, such as superficial liquid velocity (VSL), superficial gas velocity (VSG), sand concentration and sand minimum transport condition (MTC).en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/8500
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.en_UK
dc.subjectMultiphase flowen_UK
dc.subjectacoustic emissionen_UK
dc.subjectpipeline monitoringen_UK
dc.subjectsand monitoringen_UK
dc.subjectsand minimum transport condition (MTC)en_UK
dc.titleMonitoring sand particle concentration in multiphase flow using acoustic emission technologyen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
El-Alej, Mohamed Essid thesis PhD-2014.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: