Solution of the linear quadratic regulator problem of black box linear systems using reinforcement learning

dc.contributor.authorPerrusquía, Adolfo
dc.date.accessioned2022-03-23T11:11:35Z
dc.date.available2022-03-23T11:11:35Z
dc.date.issued2022-03-05
dc.description.abstractIn this paper, a Q-learning algorithm is proposed to solve the linear quadratic regulator problem of black box linear systems. The algorithm only has access to input and output measurements. A Luenberger observer parametrization is constructed using the control input and a new output obtained from a factorization of the utility function. An integral reinforcement learning approach is used to develop the Q-learning approximator structure. A gradient descent update rule is used to estimate on-line the parameters of the Q-function. Stability and convergence of the Q-learning algorithm under the Luenberger observer parametrization is assessed using Lyapunov stability theory. Simulation studies are carried out to verify the proposed approach.en_UK
dc.identifier.citationPerrusquia A. (2022) Solution of the linear quadratic regulator problem of black box linear systems using reinforcement learning, Information Sciences, Volume 595, May 2022, pp. 364-377en_UK
dc.identifier.eissn1872-6291
dc.identifier.issn0020-0255
dc.identifier.urihttps://doi.org/10.1016/j.ins.2022.03.004
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/17670
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLinear quadratic regulatoren_UK
dc.subjectState observer parametrizationen_UK
dc.subjectQ-learningen_UK
dc.subjectGradient descenten_UK
dc.subjectOutput feedbacken_UK
dc.subjectPersistency of excitationen_UK
dc.titleSolution of the linear quadratic regulator problem of black box linear systems using reinforcement learningen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Black_box_linear_systems-2022.pdf
Size:
745.77 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: