The Development of Methods to Estimate and Reduce Design Rework

Date published

2012

Free to read from

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

Type

Thesis or dissertation

ISSN

Format

Citation

Abstract

Design rework includes unnecessary repetition in design tasks to correct design problems. Resolving design matters in advance, through in-depth understanding of the design planning and rework issues and development of effective predictive tools could contribute to higher business profit margins and a faster product time-to-market. This research aims to develop three novel and structured methods to predict the design rework occurrence and effort at the very early design stage, which may otherwise remain undiscovered until the testing and refinement phase. The major contribution obtained from the Design Rework Probability of Occurrence Estimation method, DRePOE, is the development of design rework drivers. The developed drivers have been synthesised with data from interview results, direct observations, and archival records obtained from eleven world-class aerospace and automotive components manufacturers. To predict the probability of occurrence, the individual score of each driver was compared against historical records utilising the analogy-based method. The Design Rework Effort Estimation method, DREE, was developed to interconnect functional structures and identify failure relationships among components. A significant contribution of The DREE method is its capability to assess the design rework effort at the component level under the worst-case scenario. Next a Prioritisation Design by Design Rework Effort Based method, PriDDREB, was developed to provide a tool to forecast the maximum design rework given the constraint. This method provides a tool to determine and prioritise the components that may require a significant design rework effort. The three methods developed were validated with an automotive water pump, a turbocharger, and a McPherson strut suspension system in accordance with the validation square method. It is demonstrated that DRePOE, DREE, PriDDREB methods can offer the product design team a means to predict the probability of design rework occurrence and assess the required effort during the testing and refinement phase at the very early design phase.

Description

Software Description

Software Language

Github

Keywords

Design rework, Probability, Effort, Estimation

DOI

Rights

© Cranfield University, 2012. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.

Relationships

Relationships

Supplements

Funder/s