Direct numerical simulation of packed and monolith syngas catalytic combustors for micro electrical mechanical systems

dc.contributor.authorBazooyar, Bahamin
dc.contributor.authorZhu, Mingming
dc.contributor.authorManovic, Vasilije
dc.contributor.authorNabavi, Seyed Ali
dc.date.accessioned2023-08-24T11:02:46Z
dc.date.available2023-08-24T11:02:46Z
dc.date.issued2023-08-19
dc.description.abstractIn this work, a catalytic combustor for micro electrical mechanical system for syngas was designed and analysed using Direct Numerical Simulation (DNS) in conjunction with finite rate chemistry. The effect of catalyst (platinum (Pt), palladium (Pd), palladium oxide (PdO), and rhodium (Rh)), bed type (packed with twelve catalyst shapes and four catalyst monolith), shapes (packed: cylinder, hollow cylinder, four cylinder, single cylinder, single cylinder, cross-webb, grooved, pall-ring, hexagonal, berl-saddle, cube, intalox-saddle, and sphere, monolith: triangular, rectangular, hexagonal, and circular), and operating conditions (inlet temperature and velocity, fuel/air ratio, different concentrations CH4-H2-CO) on combustion efficiency and pressure drop were studied using different parameters (combustion efficiency (η), pressure drop, effectiveness factor (Ψ), and fuel conversions (H2 and CH4 conversions)). Analysis under different operating conditions reveals that the designed combustor can operate effectively with syngas of varying compositions with a high combustion efficiency of over 85%. Combustion mainly takes place on the surface of the catalyst without gas phase reaction with pressure drops between 18 Pa and 155 Pa. The intalox saddle shape catalysts resulted in the bed effectiveness factor 0.93.1 The Damköhler for hydroxyl radicals (OH) over the entire length of the reactor is uniformly distributed and well below 3, suggesting uniform combustion.en_UK
dc.identifier.citationBazooyar B, Zhu M, Manovic V, Nabavi SA. (2023) Direct numerical simulation of packed and monolith syngas catalytic combustors for micro electrical mechanical systems, Energy Conversion and Management: X, Volume 20, October 2023, Article Number 100422en_UK
dc.identifier.issn2590-1745
dc.identifier.urihttps://doi.org/10.1016/j.ecmx.2023.100422
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/20142
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectHydrogenen_UK
dc.subjectCatalytic combustoren_UK
dc.subjectCombustionen_UK
dc.subjectDNSen_UK
dc.subjectFlamelessen_UK
dc.subjectMEMSen_UK
dc.titleDirect numerical simulation of packed and monolith syngas catalytic combustors for micro electrical mechanical systemsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Packed_and_monolith_syngas_catalytic_combustors-2023.pdf
Size:
12.97 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: