Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets

Date published

2017-04-04

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1385-8947

Format

Citation

Seyed Ali Nabavi, Goran T. Vladisavljevic, Vasilije Manovic, Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets, Chemical Engineering Journal, Volume 322, August 2017, pp140-148

Abstract

Single-step generation of monodisperse multi-core double emulsion drops in three-phase glass capillary microfluidic device was investigated using a micro-particle image velocimetry (micro-PIV) system. Phase diagrams were developed to predict the number of encapsulated inner drops as a function of the capillary numbers of inner, middle and outer fluid. The maximum stable number of inner drops cores in uniform double emulsion drops was six. Starting from core/shell drops, the formation of double emulsion drops with multiple cores was achieved by decreasing the capillary number of the outer fluid and increasing the capillary number of the middle fluid. A stable continuous jet of the middle fluid loaded with inner drops was formed at high capillary numbers of the middle fluid. Empirical correlations predicting the size and generation frequency of inner drops as a function of the capillary numbers and the device geometry were developed. Dual-core double emulsion drops were used as templates for the fabrication of polymeric capsules using “on-the-fly” photopolymerisation. The capsule morphology was controlled by manipulating the stability of the inner drops through adjusting the concentration of the lipophilic surfactant in the middle fluid. At low concentration of the lipophilic surfactant, inner drop coalesced during curing and single compartment capsules with thin shells were produced from dual-core drops. The core/shell capsules produced from multi-core drops were monodispersed and larger than those produced from core/shell drops in the same device.

Description

Software Description

Software Language

Github

Keywords

Multi-core double emulsion drops and capsules, Capillary microfluidics, Dripping-to-jetting transition, Droplet formation dynamics, Micro-particle image velocimetry, Core/shell silicon microcapsules

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s