Design and performance analysis of concentrated photovoltaic cooling.

dc.contributor.advisorLuk, Patrick Chi-Kwong
dc.contributor.advisorKahagala Gamage, Upul
dc.contributor.authorIbrahim, Khalifa Aliyu
dc.date.accessioned2024-04-23T16:13:47Z
dc.date.available2024-04-23T16:13:47Z
dc.date.issued2023-01
dc.descriptionKahagala Gamage, Upul - Associate Supervisoren_UK
dc.description.abstractThe use of solar energy as a global energy source has increased over the past two decades. Photovoltaic cells, which utilise the sun to generate electricity, are a promising alternative to fossil fuels that contribute to climate change. However, the high intensity of concentrated solar radiation can cause overheating in photovoltaic cells, reducing their efficiency and power output. Researchers worldwide are improving cooling in concentrated photovoltaic cells (CPV) to enhance temperature uniformity and improve power output. Previous studies have demonstrated that pulsating flow can effectively enhance heat transfer in various fields, including electronics, mechanical engineering, and medicine. In this research, three flow patterns (continuous flow, uniform pulsating flow, and bio-inspired pulsating flow) were studied in both simulation and experimental designs. Two cooling designs were considered: the conventional design (C- Design) and the parallel design with baffles (W-B) and without baffles (Wout-B). With the implementation of 30 pulses per minute bio-inspired pulsating flow a reduction of 1.96% in solar cell temperature was observed when compared to continuous flow. This reduction in temperature was consistently observed across a range of flow rates from 0.5 to 2.5 L/m, employing the parallel Wout-B design. Notably, the bio-inspired pulsating flow shows better performance in comparison to uniform pulsating flow, as well as the conventional designs with continuous flow and uniform pulsating flow, resulting in notable improvements in cooling efficiency of 1.22%, 2.14%, and 4.00%, respectively. In terms of a direct comparison, the implementation of uniform pulsating flow in the parallel Wout-B design exhibited a maximum cooling improvement of 0.74% when contrasted with continuous flow. Furthermore, when assessing uniform pulsating flow against the C-design with uniform pulsating flow in the parallel Wout-B design, a noteworthy enhancement of 0.93% was observed. Remarkably, the C-design with uniform pulsating flow demonstrated a superior effectiveness of 1.90% when compared to the C-design with continuous flow.en_UK
dc.description.coursenameMSc by Research in Energy and Poweren_UK
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/21254
dc.language.isoen_UKen_UK
dc.publisherCranfield Universityen_UK
dc.publisher.departmentSWEEen_UK
dc.rights© Cranfield University, 2023. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.subjectPhotovoltaic Coolingen_UK
dc.subjectpower outputen_UK
dc.subjectpulsating flowen_UK
dc.subjecttemperatureen_UK
dc.subjectheat transferen_UK
dc.subjecthuman thermoregulationen_UK
dc.titleDesign and performance analysis of concentrated photovoltaic cooling.en_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnameMResen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ibrahim_K_2023.pdf
Size:
5.48 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: