Application of an efficient gradient-based optimization strategy for aircraft wing structures

Date

2018-01-04

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Department

Type

Article

ISSN

2226-4310

Format

Free to read from

Citation

Dababneh O, Kipouros T, Whidborne JF, Application of an efficient gradient-based optimization strategy for aircraft wing structures, Aerospace, Vol. 5, Issue 1, 2018, pp. 1-27

Abstract

In this paper, a practical optimization framework and enhanced strategy within an industrial setting are proposed for solving large-scale structural optimization problems in aerospace. The goal is to eliminate the difficulties associated with optimization problems, which are mostly nonlinear with numerous mixed continuous-discrete design variables. Particular emphasis is placed on generating good initial starting points for the search process and in finding a feasible optimum solution or improving the chances of finding a better optimum solution when traditional techniques and methods have failed. The efficiency and reliability of the proposed strategy were demonstrated through the weight optimization of different metallic and composite laminated wingbox structures. The results show the effectiveness of the proposed procedures in finding an optimized solution for high-dimensional search space cases with a given level of accuracy and reasonable computational resources and user efforts. Conclusions are also inferred with regards to the sensitivity of the optimization results obtained with respect to the choice of different starting values for the design variables, as well as different optimization algorithms in the optimization process.

Description

Software Description

Software Language

Github

Keywords

Structural optimization, Gradient-based algorithms, Minimum weight, Optimum solution

DOI

Rights

Attribution 4.0 International
Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements

Funder/s