Conservative numerical methods for model kinetic equations
Date published
2007-11
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Department
Type
Article
ISSN
0045-7930
Format
Citation
Titarev VA. (2007) Conservative numerical methods for model kinetic equations. Computers & Fluids, Volume 36, Issue 9, November 2007, pp. 1446-1459
Abstract
A new conservative discrete ordinate method for nonlinear model kinetic equations is proposed. The conservation property with respect to the collision integral is achieved by satisfying at the discrete level approximation conditions used in deriving the model collision integrals. Additionally to the conservation property, the method ensures the correct approximation of the heat fluxes. Numerical examples of flows with large gradients are provided for the Shakhov and Rykov model kinetic equations.
Description
Software Description
Software Language
Github
Keywords
rarefied, low Knudsen numbers, kinetic equation, Shakhov model, Rykov model, conservtive model
DOI
Rights
NOTICE: this is the author’s version of a work that was accepted for publication in Computers & Fluids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Fluids, Vol. 36, Issue 9, November 2007, Pages 1446-1459. DOI: 10.1016/j.compfluid.2007.01.009