Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings

Date published

2020-07-25

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Department

Type

Article

ISSN

2079-6412

Format

Citation

Micallef C, Zhuk Y, Aria I. (2020) Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings. Coatings, Volume 10, Issue 8, July 2020, Article number 731

Abstract

Owing to their high hardness, fracture toughness and oxidation resistance, tungsten carbide (WC) coatings are extensively deposited on parts that operate in demanding applications, necessitating wear, erosion, and corrosion resistance. The application of thick and hard WC coatings has an inevitable effect on the original dimensions of the parts, affecting the geometrical tolerances and surface roughness. The capability of achieving a sub-micron surface finish and adhere to tight geometrical tolerances accurately and repeatably is an important requirement, particularly with components that operate in high-precision sliding motion. Meeting such requirements through conventional surface finishing methods, however, can be challenging due to the superior mechanical and tribological properties of WC coatings. A brief review into the synthesis techniques of cemented and binderless WC coatings is presented together with a comprehensive review into the available techniques which are used to surface finish WC-based coatings with reference to their fundamental mechanisms and capabilities to process parts with intricate and internal features. The binderless WC/W coating considered in this work is deposited through chemical vapour deposition (CVD) and unlike traditional cemented carbide coatings, it has a homogenous coating structure. This distinctive characteristic has the potential of eliminating key issues commonly encountered with machining and finishing of WC-based coatings. Here, six contact and non-contact surface finishing techniques, include diamond turning, precision grinding, superfinishing, vibratory polishing, electrical discharge machining, and electropolishing are discussed along with their current use in industry and limitations. Key challenges in the field are highlighted and potential directions for future investigation, particularly on binderless WC coatings, are proposed herein

Description

Software Description

Software Language

Github

Keywords

surface roughness, surface finishing, precision machining, tungsten carbide coatings

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s