Underground parallel pipelines domino effect: An analysis based on pipeline crater models and historical accidents

dc.contributor.authorSilva, Edmilson P.
dc.contributor.authorNele, Marcio
dc.contributor.authorFrutuoso, e Melo
dc.contributor.authorKönözsy, László Z.
dc.date.accessioned2016-07-06T08:40:25Z
dc.date.available2016-07-06T08:40:25Z
dc.date.issued2016-06-02
dc.description.abstractThis paper focuses on the analysis of the possibility of domino effect in underground parallel pipelines relying on historical accident data and pipeline crater models. An underground pipeline can be considered as safe following an accident with an adjacent gas or liquefied pipeline when it remains outside the ground crater generated. In order to prevent the domino effect in these cases, the design of parallel pipelines has to consider adequate pipeline separations based on the crater width, which is one of the widely used methods in engineering applications. The objective of this work is the analysis of underground petroleum product pipelines ruptures with the formation of a ground crater as well as the evaluation of possible domino effects in these cases. A detailed literature survey has been carried out to review existing crater models along with a historical analysis of past accidents. A FORTRAN code has been implemented to assess the performance of the Gasunie, the Batelle and the Advantica crater models. In addition to this, a novel Accident-Based crater model has been presented, which allows the prediction of the crater width as a function of the relevant design pipeline parameters as well as the soil density. Modifications have also been made to the Batelle and Accident-Based models in order to overcome the underestimation of the crater width. The calculated crater widths have been compared with real accident data and the performance evaluation showed that the proposed Accident-Based model has a better performance compared to other models studied in this work. The analysis of forty-eight past accidents indicated a major potential of underground parallel pipelines domino effect which is proven by two real cases taken from the literature. Relying on the investigated accidents, the crater width was smaller than or equal to 20 m in most cases indicating that the definition of underground pipeline separations at around 10 m would be sufficient to ensure a small probability of the domino effect.en_UK
dc.identifier.citationEdmilson P. Silva, Marcio Nele, Paulo F. Frutuoso e Melo, László Könözsy, Underground parallel pipelines domino effect: An analysis based on pipeline crater models and historical accidents, Journal of Loss Prevention in the Process Industries, Volume 43, September 2016, Pages 315-331en_UK
dc.identifier.cris14683801
dc.identifier.issn0950-4230
dc.identifier.urihttps://doi.org/10.1016/j.jlp.2016.05.031
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/10092
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectUnderground pipelinesen_UK
dc.subjectDomino effecten_UK
dc.subjectRisk assessmenten_UK
dc.subjectPart accidentsen_UK
dc.titleUnderground parallel pipelines domino effect: An analysis based on pipeline crater models and historical accidentsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Underground_parallel_pipelines_domino_effect-2016.pdf
Size:
25.11 MB
Format:
Adobe Portable Document Format
Description: