Underground parallel pipelines domino effect: An analysis based on pipeline crater models and historical accidents

Date published

2016-06-02

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0950-4230

Format

Citation

Edmilson P. Silva, Marcio Nele, Paulo F. Frutuoso e Melo, László Könözsy, Underground parallel pipelines domino effect: An analysis based on pipeline crater models and historical accidents, Journal of Loss Prevention in the Process Industries, Volume 43, September 2016, Pages 315-331

Abstract

This paper focuses on the analysis of the possibility of domino effect in underground parallel pipelines relying on historical accident data and pipeline crater models. An underground pipeline can be considered as safe following an accident with an adjacent gas or liquefied pipeline when it remains outside the ground crater generated. In order to prevent the domino effect in these cases, the design of parallel pipelines has to consider adequate pipeline separations based on the crater width, which is one of the widely used methods in engineering applications. The objective of this work is the analysis of underground petroleum product pipelines ruptures with the formation of a ground crater as well as the evaluation of possible domino effects in these cases. A detailed literature survey has been carried out to review existing crater models along with a historical analysis of past accidents. A FORTRAN code has been implemented to assess the performance of the Gasunie, the Batelle and the Advantica crater models. In addition to this, a novel Accident-Based crater model has been presented, which allows the prediction of the crater width as a function of the relevant design pipeline parameters as well as the soil density. Modifications have also been made to the Batelle and Accident-Based models in order to overcome the underestimation of the crater width. The calculated crater widths have been compared with real accident data and the performance evaluation showed that the proposed Accident-Based model has a better performance compared to other models studied in this work. The analysis of forty-eight past accidents indicated a major potential of underground parallel pipelines domino effect which is proven by two real cases taken from the literature. Relying on the investigated accidents, the crater width was smaller than or equal to 20 m in most cases indicating that the definition of underground pipeline separations at around 10 m would be sufficient to ensure a small probability of the domino effect.

Description

Software Description

Software Language

Github

Keywords

Underground pipelines, Domino effect, Risk assessment, Part accidents

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s