Realtime calibration of an industrial robot
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In large scale, complex and low volume manufacturing systems, robotics are now considered unavoidable for automating the factory operations. The aerospace industry focuses on a high variety and quality but extremely low volume. The precision it requires for numerous tasks is unique and distinct from any other manufacturing industry. This can comprise accurate position, module assembly, inspection, fastening, etc. The scale of the robot invites different types of errors during operation, which can be either because of the kinematics of the robot or because of the environment (noise, temperature, load, etc.). There are packages available from robot manufacturers for the correction and compensation of errors on the robot to achieve accuracy. There are two associated problems:
- cost and 2. static nature. They are very costly and they do not provide correction in realtime fashion (dynamic); the robot stops, waits for the correction, and then moves to the next position. The external tool to monitor the accuracy also requires attaching with the robot permanently. These are dedicated resources. These tools for accurate measurement are expensive and attached permanently to a robot, which means wastage of resources. These measuring tools are called metrology devices and attaching these devices and the robot to the network means that other robots/machines can also use these expensive tools for measurement. Our aim was to address two problems in this project: 1. calibration (error correction and compensation of robot) and 2. dynamic and realtime processing. It helped to perform the dynamic error correction and the compensation of an industrial robot. The results showed the error correction was achieved in the region of 0.02 mm.