Composite finite‐time convergent guidance law for maneuvering targets with second‐order autopilot lag
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This paper aims to develop a new finite‐time convergent guidance law for intercepting maneuvering targets accounting for second‐order autopilot lag. The guidance law is applied to guarantee that the line of sight (LOS) angular rate converges to zero in finite time and results in a direct interception. The effect of autopilot dynamics can be compensated based on the finite‐time backstepping control method. The time derivative of the virtual input is avoided, taking advantage of integral‐type Lyapunov functions. A finite‐time disturbance observer (FTDOB) is used to estimate the lumped uncertainties and high‐order derivatives to improve the robustness and accuracy of the guidance system. Finite‐time stability for the closed‐loop guidance system is analyzed using the Lyapunov function. Simulation results and comparisons are presented to illustrate the effectiveness of the guidance strategy.