A microfluidics and agent-based modeling framework for investigating spatial organization in bacterial colonies: The case of Pseudomonas Aeruginosa amd H1-type VI secretion interactions

dc.contributor.authorWilmoth, Jared L.
dc.contributor.authorDoak, Peter W.
dc.contributor.authorTimm, Andrea
dc.contributor.authorHalsted, Michelle
dc.contributor.authorAnderson, John D.
dc.contributor.authorGinovart, Marta
dc.contributor.authorPrats, Clara
dc.contributor.authorPortell, Xavier
dc.contributor.authorRetterer, Scott T.
dc.contributor.authorFuentes-Cabrera, Miguel
dc.date.accessioned2018-02-09T10:25:35Z
dc.date.available2018-02-09T10:25:35Z
dc.date.issued2018-02-06
dc.description.abstractThe factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.en_UK
dc.identifier.citationWilmoth J, Doak P, Timm A, Halsted M, Anderson JD, Prats C, Ginovart M, Portell X, Retterer S, Fuentes-Cabrera M, A microfluidics and agent-based modeling framework for investigating spatial organization in bacterial colonies: the case of Pseudomonas aeruginosa and H1-Type VI Secretion Interactions, Frontiers in Microbiology, Vol. 9, February 2018, Article 33en_UK
dc.identifier.issn1664-302X
dc.identifier.urihttp://dx.doi.org/10.3389/fmicb.2018.00033
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/12976
dc.language.isoenen_UK
dc.publisherFrontiers Mediaen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAgent-based modelingen_UK
dc.subjectPseudomonas aeruginosaen_UK
dc.subjectType VI secretionen_UK
dc.subjectSilicon microwell arraysen_UK
dc.subjectMicrobial successionen_UK
dc.subjectMicrobial organizationen_UK
dc.subjectSpatial confinementen_UK
dc.titleA microfluidics and agent-based modeling framework for investigating spatial organization in bacterial colonies: The case of Pseudomonas Aeruginosa amd H1-type VI secretion interactionsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_microfluidics_and_agent-based_modeling_framework-2018.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: