Investigation of hydrostatic fluid forces in varying clearance turbomachinery seals

Date

2017-11-21

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

ASME

Department

Type

Article

ISSN

0742-4795

Format

Citation

S. M. Tibos, C. Georgakis, J. A. Teixeira and S. Hogg. Investigation of hydrostatic fluid forces in varying clearance turbomachinery seals. Journal of Engineering for Gas Turbines and Power, Volume 140, Issue 5, Article number 052502

Abstract

Varying clearance, rotor-following seals are a key technology for meeting the demands of increased machine flexibility for conventional power units. These seals follow the rotor through hydrodynamic or hydrostatic mechanisms. Forward-facing step (FFS) and Rayleigh step designs are known to produce positive fluid stiffness. However, there is very limited modeling or experimental data available on the hydrostatic fluid forces generated from either design. A quasi-one-dimensional (1D) method has been developed to describe both designs and validated using test data. Tests have shown that the FFS and the Rayleigh step design are both capable of producing positive film stiffness and there is little difference in hydrostatic force generation between the two designs. This means any additional hydrodynamic features in the Rayleigh step design should have a limited effect on hydrostatic fluid stiffness. The analytical model is capable of modeling both the inertial fluid forces and the viscous fluid losses, and the predictions are in good agreement with the test data.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s