Enhanced microwave imaging of the subsurface for humanitarian demining applications

dc.contributor.advisorMorro, Ivor L.
dc.contributor.authorWirth, Sebastian G.
dc.date.accessioned2021-09-30T12:51:17Z
dc.date.available2021-09-30T12:51:17Z
dc.date.issued2020-05
dc.description© Cranfield University 2020. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owneren_UK
dc.description.abstractThis thesis presents a theoretical analysis and applied evaluation deploying ground penetrating radar (GPR) for landmine detection. An original contribution has been made in designing and manufacturing a light-weight, low-cost, fully polarimetric antenna system for GPR, enabling easy transportation and assembly. This facilitates extensive use by various smaller communities in remote areas. By achieving the goal of supplying various smaller communities with advanced ground penetrating radar technology the technological standard of landmine detection can be improved beyond existing solutions such as metal detection or manual probing. The novel radar system itself allows detection of various subsurface targets of different shapes and sizes, metallic and non-metallic, in a number of different soils, such as sand, loam or gravel and therefore can be used in versatile environments. The GPR system has been realised by designing novel light-weight, 3D printed X-band horn antennas, manufactured from single piece plastic then copper electroplated. These antennas are 50% lighter than their commercial equivalents. They are incorporated in an antenna array as a group of four to allow full-polarimetric imaging of the subsurface. High resolution images of landmines and calibration targets were performed in the subsurface over an experimental sand test bed. For performing subsurface measurements in the near-field, four novel gradient-index (GRIN) lenses were designed and 3D printed to be incorporated in the apertures of the Xband antennas. The improved target detection from these lenses was proven by scanning the test bed and comparing the imaging data of the antenna array with and without lensesattached. A rigorous theoretical study of different decomposition techniques and their effect on the imaging and detection accuracy for polarimetric surface penetrating data was performed and applied to the gathered imaging data to reliably isolate and detect subsurface targets. Studied decomposition techniques were Pauli decomposition parameters and Yamaguchi polarimetry decomposition. It was found that it is paramount to use both algorithms on one set of subsurface data to detect all features of a buried target. A novel temporal imaging technique was developed for exploiting natural occurring changes in soil moisture level, and hence its dielectric properties. Contrary to the previously introduced imaging techniques this moisture change detection (MCD) mechanism does not rely on knowledge of the used measurement setup or deploying clutter suppression techniques. This time averaged technique uses several images of a moist subsurface taken over a period while the moisture evaporates from the soil. Each image pixel is weighted by the phase change occurring over the evaporation period and a resulting B-scan image reveals the subsurface targets without surrounding clutter. Finally, a multi-static antenna set-up is examined on its capability for suppressing surface clutter and its limitations are verified by introducing artificial surface clutter in form of pebbles to the scene. The resulting technique was found to suppress up to 30 The GPR antenna system developed in this thesis and the corresponding imaging techniques have contributed to a significant improvement in subsurface radar imaging performance and target discrimination capabilities. This work will contribute to more efficient landmine clearance in some of the most challenged parts of the world.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/17122
dc.language.isoenen_UK
dc.relation.ispartofseriesPhD;PhD-20-WIRTH
dc.rights© Cranfield University, 2015. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
dc.titleEnhanced microwave imaging of the subsurface for humanitarian demining applicationsen_UK
dc.typeThesisen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wirth_PhD_05_2021.pdf
Size:
44.97 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: