From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal

dc.contributor.authorRolph, Catherine A.
dc.contributor.authorVilla, Raffaella
dc.contributor.authorJefferson, Bruce
dc.contributor.authorBrookes, Adam
dc.contributor.authorChoya, Andoni
dc.contributor.authorIceton, Gregg
dc.contributor.authorHassard, Francis
dc.date.accessioned2019-07-12T09:46:27Z
dc.date.available2019-07-12T09:46:27Z
dc.date.issued2019-05-21
dc.description.abstractPolar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operational biofilters have shown the ability to remove metaldehyde. As sorption plays a minor role for such polar organic micropollutants, biodegradation is therefore likely to be the main removal pathway. In this work, the biodegradation of metaldehyde was monitored, and assessed, in an operational slow sand filter. Long-term data showed that metaldehyde degradation improved when inlet concentrations increased. A comparison of inactive and active sand batch reactors showed that metaldehyde removal happened mainly through biodegradation and that the removal rates were greater after the biofilm was acclimated through exposure to high metaldehyde concentrations. This suggested that metaldehyde removal was reliant on enrichment and that the process could be engineered to decrease treatment times (from days to hours). Through-flow experiments using fluidised bed reactors, showed the same behaviour following metaldehyde acclimation. A 40% increase in metaldehyde removal was observed in acclimated compared with non-acclimated columns. This increase was sustained for >40 days, achieving an average of 80% removal and compliance (<0.1 μ L−1) for >20 days. An initial microbial analysis of the acclimated and non-acclimated biofilm from the same filter materials, showed that the microbial community in acclimated sand was significantly different. This work presents a novel conceptual template for a faster, chemical free, low cost, biological treatment of metaldehyde and other polar pollutants in drinking water. In addition, this is the first study to report kinetics of metaldehyde degradation in an active microbial biofilm at a WTW.en_UK
dc.identifier.citationRolph CA, Villa R, Jefferson B, et al., (2019) From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal, Science of the Total Environment, Volume 685, October 2019, pp. 410-418.en_UK
dc.identifier.cris23559930
dc.identifier.issn0048-9697
dc.identifier.urihttps://doi.org/10.1016/j.scitotenv.2019.05.304
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/14336
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMetaldehydeen_UK
dc.subjectMicropollutant removalen_UK
dc.subjectAcclimationen_UK
dc.subjectSlow-sand filteren_UK
dc.subjectFluidised-bed reactoren_UK
dc.titleFrom full-scale biofilters to bioreactors: Engineering biological metaldehyde removalen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
From_ full-scale_biofilters_to_bioreactors-2019.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: