Numerical simulation of two-phase gas and non-Newtonian shear-thinning fluid flows in pipelines

dc.contributor.advisorThompson, Christopher P.
dc.contributor.advisorGourma, Mustapha
dc.contributor.authorJia, Ninghong
dc.date.accessioned2015-05-22T17:36:05Z
dc.date.available2015-05-22T17:36:05Z
dc.date.issued2011-08
dc.description.abstractThe one goal of this research is to present the adaptive mesh refinement (AMR) technique for one dimensional two-phase slug flows. Uniform fine meshes for these long devices are costly and, in general situations, the optimum space discretisation could not be determined a priori. The adaptive mesh refinement (AMR) procedure permits this problem to be remedied by refining the mesh locally, within regions where sharp discontinuities and steep gradients are present. With the appropriate algorithm and data organisation, it helps to reduce CPU time and speed up simulations of flows in long pipes, while preserving accuracy and acceptable execution times. The main objective of this research is to investigate the behaviour of the gas and non-Newtonian shear-thinning fluids in horizontal pipes. Predictions of drag reduction ratio and holdup are presented for the stratified flow of gas and non-Newtonian Ostwald-deWaele liquid. For slug flow regimes, the mechanistic slug unit model is adopted in order to estimate the pressure gradients along the slug unit. The slug unit model is rearranged and reinterpreted as inviscid Burgers’s equation for incompressible phases. For both stratified and slug flow regimes, three dimensional CFD (computational fluid dynamics) simulations were performed in order to compare the drag reduction ratio and pressure gradients. In stratified flows, CFD is also used in an attempt to evaluate the liquid wall friction factor and to compare the obtained values with those given by empirical standard correlations.The estimated pressure gradient and drag reductions are compared with experimental data. Calculations showed an excellent agreement between the simulation and experimental data. Shear thinning effects are also correctly modelled in this work.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/9192
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2011. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.titleNumerical simulation of two-phase gas and non-Newtonian shear-thinning fluid flows in pipelinesen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ninghong_Jia_Thesis_2011.pdf
Size:
6.59 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: