Improvements in electrochemical glucose biosensors

dc.contributor.advisorGe, Yi
dc.contributor.advisorPiletsky, Sergey A.
dc.contributor.advisorTurner, Anthony P. F.
dc.contributor.authorFragkou, Vasiliki
dc.date.accessioned2011-10-31T16:15:10Z
dc.date.available2011-10-31T16:15:10Z
dc.date.issued2010-09
dc.description.abstractDiabetes is one of the leading causes of death and disability in the world. Even though insulin was discovered in 1920, an intense research on diabetes has been conducted during the last five decades and this is because of the market size. The huge demand is creating the need for the development of new approaches. This project involved the research aimed at better understanding and improvements in performance of glucose biosensors. In general, high surface area electrodes are desired as the high surface area provides more active sites for electrochemical reactions, and hence higher kinetic rate capability. Therefore, the determination of the active electrochemical surface area of the electrode is very important. A study has been conducted to determine the real electrochemical surface area of the Pelikan screen printed electrodes (SPEs) and a method has been optimised and established by Pelikan for the evaluation of their SPEs. Another very important issue that most of the current blood glucose monitoring tests are facing is the haematocrit effect, since the haematocrit differences observed in the blood samples can significantly affect glucose measurements. Therefore a study has been conducted in order to observe the absorption of the blood samples into the working electrode paste according to the haematocrit level. The second part of the study included the characterisation of the novel conjugated polymer made of N-(N, N’ diethyldicarbamoyl ethyl amido ethyl) aniline (NDDEAEA), the optimization of the conditions for the electrochemical polymerization, their application in grafting and finally the development of NDDEAEA based glucose biosensor. The new conducting polymer, acted as a matrix for the biosensor fabrication in this study, possesses macroiniferter properties and is capable of initiation free radical initiated addition polymerisation after formation of the polyaniline (PANI) material while preserving or even enhancing some of the PANI’s electrochemical properties. This material can potentially be used in the construction of novel Pelikan electrodes with enhanced integration functionalities, e.g. grafting non adhesive polymer coatings to assure that the poor performance in sensors as a result of impact of blood components can be mitigated. The final study included the development and optimisation of the reaction conditions for grafting a hyperbranched polymer onto the surface of the multi walled carbon nanotubes (MWCNT), using the A3 and B2 approach (described below). The aim of this work was achieving further increase in the sensitivity of Pelikan sensors.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/6532
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights©Cranfield University, 2010. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holderen_UK
dc.titleImprovements in electrochemical glucose biosensorsen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VASILIKI_FRAGKOU_Thesis_2010.pdf
Size:
47.25 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: