Biomimetic sensors for HbA1c

dc.contributor.advisorPiletsky, Sergey A.
dc.contributor.advisorTurner, Anthony P. F.
dc.contributor.authorBiela, Anna
dc.date.accessioned2011-10-03T08:54:17Z
dc.date.available2011-10-03T08:54:17Z
dc.date.issued2010-07
dc.description.abstractDiabetes mellitus is a growing health problem worldwide. Suitable long-term control and management of this disease are enabled by determination of glycated haemoglobin (HbA1c) in blood. The results are given as %HbA1c of total haemoglobin. Presently available tests vary in cost and convenience and there is an identified need to introduce improved equipment for self-monitoring. This dissertation focuses on fast and straightforward detection of glycated haemoglobin (HbA1c) using cyclic voltammetry and chronoamperometry. Haemoglobin was determined by monitoring its reaction with potassium ferricyanide on screen printed electrodes at an oxidative potential +500 mV. A working electrode was modified with carbon nanotubes to enhance electron transfer. A calibration curve was linear in a range from 0.83 to 83 mg/mL. Another innovative approach to detecting haemoglobin using its enzymatic activity was also developed. Detection of haemoglobin was performed with hydroquinone and hydrogen peroxide on screen printed electrodes at a potential -400 mV in a Flow Injection Analysis system (FIA). Cont/d.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/6275
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 2010. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owneren_UK
dc.titleBiomimetic sensors for HbA1cen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Anna_Biela_Thesis_2010.pdf
Size:
3.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: