Simulation and Optimization of Integrated Maintenance Strategies for an Aircraft Assembly Process

dc.contributor.advisorSreenuch, Tarapong
dc.contributor.advisorTsourdos, Antonios
dc.contributor.authorLi, Jin
dc.date.accessioned2014-05-08T16:24:38Z
dc.date.available2014-05-08T16:24:38Z
dc.date.issued2013-11
dc.description.abstractIn this thesis, the COMAC ARJ21 fuselage’s final assembly process is used as a case study. High production rate (i.e. number of aircraft assembled per year) with reasonable cost is the overall aim in this example. The output of final assembly will essentially affect the prior and subsequent processes of the overall ARJ21 production. From the collected field data, it was identified that a number of disruptions (or bottlenecks) in the assembly sequence were caused by breakdowns and maintenance of the (semi-)automatic assembly machines like portable computer numerical control (CNC) drilling machine, rivet gun and overhead crane. The focus of this thesis is therefore on the maintenance strategies (i.e. Condition-Based Maintenance (CBM)) for these equipment and how they impact the throughput of the fuselage assembly process. The fuselage assembly process is modelled and analysed by using agent-based simulation in this thesis. The agent approach allows complex process interactions of assembly, equipment and maintenance to be captured and empirically studied. In this thesis, the built network is modelled as the sequence of activities in each stage. Each stage is broken down into critical activities which are parameterized by activity lead-time and equipment used. CBM based models of uncertain degradation and imperfect maintenance are used in the simulation study. A scatter search is used to find multi-objective optimal solutions for the CBM regime, where the maintenance-related cost and production rate are the optimization objectives. In this thesis, in order to ease computation intensity caused by running multiple simulations during the optimization and to simplify a multi-objective formulation, multiple Min-Max weightings are applied to trace Pareto front. The empirical analysis reviews the trade-offs between the production rate and maintenance cost and how these objectives are influenced by the design parameters.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/8439
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2013. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.en_UK
dc.subjectAircraft Assemblyen_UK
dc.subjectCondition Based Maintenanceen_UK
dc.subjectAgent Based Simulationen_UK
dc.subjectMulti-Objective Optimizationen_UK
dc.titleSimulation and Optimization of Integrated Maintenance Strategies for an Aircraft Assembly Processen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelMastersen_UK
dc.type.qualificationnameMSc by Researchen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li_J_Thesis_2013.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: