Mechanophore-linked hydroxyl-terminated polybutadiene for the remote detection and quantification of mechanical stress
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Polymers containing chromophores often exhibit mechanoresponsive behaviour, allowing the remote detection of stress in components such as rocket motors without taking the rockets out of service. Here we describe a polymer comprising a difunctional spiropyran chromophore and methyl methacrylate cross-linked with hydroxyl-terminated polybutadiene (HTPB). This polymer was developed as a sensor for the non-destructive monitoring of mechanical stress by using the force-induced colour changes as a quantitative readout. After about 40 N of load was applied there was a gradual colour changes proportional to the compressive forces on the sample, as revealed by in-situ monitoring using a video camera and UV–Vis spectrometry. The tests highlighted a gradual decrease in the transmitted light intensity at 675 nm with increasing load, due to the opening of the spiropyran rings and their conversion to the coloured merocyanine forms. A reversible change to the initial colour occurred 72 h after the load was removed, but only under artificial fluorescent lighting, confirming that visible light is required for the ring-closing reaction. This new polymer is an ideal candidate for the remote detection of stress-induced damage in inaccessible structures or essential equipment that cannot be withdrawn from service for testing.