Fusion and comparison of prognostic models for remaining useful life of aircraft systems
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Changes in the performance of an aircraft system will straightforwardly affect the safe operation of the aircraft, and the technical requirements of Prognostics and Health Management (PHM) are highly relevant. Remaining Useful Life (RUL) prediction, part of the core technologies of PHM, is a cutting-edge innovation being worked on lately and an effective means to advance the change of upkeep support mode and work on the framework's security, unwavering quality, and economic reasonableness. This paper summarizes a detailed preliminary literature review and comparison of different prognostic approaches and the forecasting methods' taxonomy, the methodology's details, and provides its application to aircraft systems. It also provides a brief introduction to the predictive maintenance concept and condition-based maintenance (CBM). This article uses several predictive models to predict RUL and classifies conventional regression algorithms according to the similarity in function and form of the algorithms. More classical algorithms in each category are selected to compare the prediction results, and finally, the combined effects of the RUL prediction are obtained by weighted fusion, accuracy, and compatibility. The performance of the proposed models is assessed based on evaluations of RUL acquired from the hybrid and individual predictive models. This correlation depends on the most current prognostic metrics. The outcomes show that the proposed strategy develops precision, robustness, and adaptability. Hence, the work in this paper shall enrich the advancement of predictive maintenance and modern innovation of prognostic development.