Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal

dc.contributor.authorCui, Jian
dc.contributor.authorDuan, Lunbo
dc.contributor.authorJiang, Ying
dc.contributor.authorZhao, Changsui
dc.contributor.authorAnthony, Edward J.
dc.date.accessioned2017-12-20T20:08:15Z
dc.date.available2017-12-20T20:08:15Z
dc.date.issued2017-12-01
dc.description.abstractThe migration and emission of mercury (Hg) were studied for three 410 t/h circulating fluidized bed (CFB) boilers co-firing petroleum coke and coal. Both the Ontario Hydro Method (OHM) and US Environmental Protection Agency (EPA) Method 30B were employed to sample gas phase emissions of mercury from the flue gas, and to compare the agreement for these different measurement methods in industrial application. Concurrent with flue gas sampling, solid and liquid samples including fuel, bottom ash, fly ash and gypsum, wastewater, etc., were also collected to determine the total mass balance and map the mercury migration from the power plant. The results showed that the mass balance rates ranged from 83.9% to 122.7%, which can be considered to be both acceptable and reliable. The vast majority of mercury emitted was distributed in the fly ash and stack gas, accounting for 61.36–67.71% and 22.22–33.35%, respectively. The total Hg concentration measured by OHM is comparable with that determined by EPA Method 30B; however, EPA Method 30B possesses advantages in terms of flexibility. The fabric filter (FF) has better Hg0 and Hg2+ removal efficiencies than the electrostatic precipitator (ESP). Because the Hg contained in the liquid waste streams greatly exceeded Chinese regulations, the main emphasis of future work should be focused on wastewater treatment. The mercury emission factors in this study are in the range of 0.69 g/TJ-0.80 g/TJ, which provides basic data for such CFB power plants in China. The CFB boilers equipped with ESP + WFGD or FF + WFGD appear to have the potential to significantly reduce Hg emission to the atmosphere.
dc.identifier.citationCui J, Duan L, Jiang Y, Zhao C, Anthony EJ, Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal, Fuel, Volume 215, 1 March 2018, pp. 638-646en_UK
dc.identifier.issn0016-2361
dc.identifier.urihttp://dx.doi.org/10.1016/j.fuel.2017.11.062
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/12816
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHgen_UK
dc.subjectCirculating fluidized beden_UK
dc.subjectCo-firing of petroleum coke and coalen_UK
dc.subjectMigrationen_UK
dc.subjectEmission factorsen_UK
dc.titleMigration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coalen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Migration_and_emission_of_mercury-2017.pdf
Size:
818.14 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: