Surrogate modelling for wing planform multidisciplinary optimisation using model-based engineering

dc.contributor.authorPagliuca, Giampaolo
dc.contributor.authorKipouros, Timoleon
dc.contributor.authorSavill, Mark
dc.date.accessioned2019-05-23T11:06:34Z
dc.date.available2019-05-23T11:06:34Z
dc.date.issued2019-05-09
dc.description.abstractOptimisation is aimed at enhancing aircraft design by identifying the most promising wing planforms at the early stage while discarding the least performing ones. Multiple disciplines must be taken into account when assessing new wing planforms, and a model-based framework is proposed as a way to include mass estimation and longitudinal stability alongside aerodynamics. Optimisation is performed with a particle swarm optimiser, statistical methods are exploited for mass estimation, and the vortex lattice method (VLM) with empirical corrections for transonic flow provides aerodynamic performance. Three surrogates of the aerodynamic model are investigated. The first one is based on radial basis function (RBF) interpolation, and it relies on a precomputed database to evaluate the performance of new wing planforms. The second one is based on an artificial neural network, and it needs precomputed data for a training step. The third one is a hybrid model which switches automatically between VLM and RBF, and it does not need any precomputation. Its switching criterion is defined in an objective way to avoid any arbitrariness. The investigation is reported for a test case based on the common research model (CRM). Reference results are produced with the aerodynamic model based on VLM for two- and three-objective optimisations. Results from all surrogate models for the same benchmark optimisation are compared so that their benefits and limitations are both highlighted. A discussion on specific parameters, such as number of samples for example, is given for each surrogate. Overall, a model-based implementation with a hybrid model is proposed as a compromise between versatility and an arbitrary level of accuracy for wing early-stage design.en_UK
dc.identifier.citationPagliuca G, Kipouros T & Savill MA (2019) Surrogate modelling for wing planform multidisciplinary optimisation using model-based engineering, International Journal of Aerospace Engineering, 2019 Article Number 4327481.en_UK
dc.identifier.issn1687-5966
dc.identifier.urihttps://doi.org/10.1155/2019/4327481
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/14200
dc.language.isoenen_UK
dc.publisherHindawi Publishing Corporationen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSurrogate modelling for wing planform multidisciplinary optimisation using model-based engineeringen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Surrogate_modelling_for_wing_planform_multidisciplinary_optimisation-2019.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: