CoSe2/Co nanoheteroparticles embedded in Co, Nco-doped carbon nanopolyhedra/nanotubes as anefficient oxygen bifunctional electrocatalyst for Zn–air batteries

Citation

Zou J, Luo Q, Wu H, et al., (2020) CoSe2/Co nanoheteroparticles embedded in Co, Nco-doped carbon nanopolyhedra/nanotubes as anefficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustainable Energy and Fuels, Volume 4, Issue 9, September 2020, pp. 4722-4732

Abstract

Transition metal selenide-based materials have been demonstrated as promising electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), yet the actual design of a highly efficient and stable electro-catalyst based on these materials still remains a long and arduous challenge. Herein, a predesigned hybrid Zn/Co zeolitic imidazole framework was used to fabricate CoSe2/Co nanoheteroparticles embedded within hierarchically porous Co, N co-doped carbonnanopolyhedra/nanotubes (CoSe2/Co@NC-CNTs) through a facile approach involving controlled carbonization and selenization procedures. As expected, the optimized CoSe2/Co@NC-CNT-1 displayed outstanding electrocatalytic performance for the ORR and OER, with an onset potential of 0.95 V vs. RHE, a half-wave potential of 0.84 V vs. RHE for ORR, and a potential of 1.69 V vs. RHE for OER at 10 mA cm−2. It also exhibited excellent long-term stability and methanol resistance ability, which were superior to commercial IrO2 and the commercial 20 wt% Pt/C catalyst. Notably, the assembled Zn–air battery with CoSe2/Co@NC-CNT-1 showed a low charge–discharge voltage gap (0.696 V at 10 mA cm−2) and a high peak power density (100.28 mW cm−2) with long-term cycling stability. These superior performances can be ascribed to the synergistic effects of the highly active CoSe2/Co nanoheterostructure, hierarchically porous structure with a large surface area, high electrical conductivity and uniform doping of the Co and N

Description

item.page.description-software

item.page.type-software-language

item.page.identifier-giturl

Keywords

Rights

Attribution-NonCommercial 4.0 International

item.page.relationships

item.page.relationships

item.page.relation-supplements