Analysis and experiment of a VTOL flapping wing rotor micro aircraft

dc.contributor.advisorGuo, Shijun J.
dc.contributor.advisorWhidborne, James F.
dc.contributor.authorPan, Yingjun
dc.date.accessioned2025-06-11T14:04:15Z
dc.date.available2025-06-11T14:04:15Z
dc.date.freetoread2025-06-11
dc.date.issued2023-06
dc.descriptionWhidborne, James F. - Associate Supervisor
dc.description.abstractThis thesis presents an in-depth study of the aerodynamic and structural analysis of a novel bio-inspired flapping wing rotor (FWR) micro aerial vehicle (MAV) capable of vertical take-off and landing. The FWR is characterized by a combination of active flapping motion with passive rotation of the wings in an asymmetric installation to produce a significantly higher lift coefficient than traditional flapping wings. This research is aimed at further enhancing the FWR MAV’s efficiency and aerodynamic performance with flight capability and stability. This is approached by improving the FWR kinematics of motion and mechanism through analytical, numerical simulation, and experimental methods. In the first step, an efficient wing rotation method that allowed a small angle of attack in the downstroke and a larger one in the upstroke was considered. A novel Passive Pitching Angle Variation (PPAV) device, replacing traditional active rotation, was developed and integrated into the flapping mechanism. Using a high-speed camera and a load cell device for experiments, the PPAV-integrated FWR demonstrated a significant increase in aerodynamic efficiency compared to its constant pitch angle counterpart. In the second step, the study focused on enhancing FWR-MAV power efficiency by integrating springs into the mechanism, thereby reducing input power due to the counterbalance between elastic and inertia forces. Numerical analysis and experimentation with an FWR test model were conducted to simulate and measure the resultant kinematics of motion and forces. Specific emphasis was placed on the influence of spring stiffness on the FWR’s aerodynamic and power efficiency. This led to the development of a PPAV-integrated FWR model capable of remote-controlled vertical take-off and hovering. In the third step, the study explored wing flexibility’s impact on FWR’s unsteady aerodynamics using Fluid-Structure Interaction (FSI) analysis and experiments. A novel dragonfly-like wing with a curved sweep-back wingtip demonstrated aerodynamic benefits. The study elucidates the mechanism of wing bending deformation linked to vortex variation, implying that optimal spanwise variable stiffness can enhance lift and power efficiency. Employing flexible wings, the FWR model’s lift significantly increased from 25 g to 51 g, highlighting enhanced efficiency and payload capacity. The study finally explored the FWR-MAV's flight performance and efficiency, including VTOL and forward flight. It proposed a transformable MAV concept from VTOL FWR mode to a bird-like flapping-wing mode in forward flight. A test model was built to validate the transformation concept. Using MSC.ADAMS/Simulink co- simulations and a quasi-steady aerodynamic method, the flights of the FWR model in both flight modes were simulated and stability was demonstrated.
dc.description.coursenamePhD in Aerospace
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/24028
dc.language.isoen
dc.publisherCranfield University
dc.publisher.departmentSATM
dc.rights© Cranfield University, 2023. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
dc.subjectFlapping Wing Rotor
dc.subjectPassive Pitching Angle Variation
dc.subjectElastic Mechanism
dc.subjectAerodynamic Performance
dc.subjectPower Efficiency
dc.subjectFlight Simulation
dc.titleAnalysis and experiment of a VTOL flapping wing rotor micro aircraft
dc.typeThesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationnamePhD

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pan_Y_2023.pdf
Size:
6.9 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: