Minimizing transient energy growth in plane Poiseuille flow
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The feedback control of laminar plane Poiseuille flow is considered. In common with many flows, the dynamics of plane Poiseuille flow is very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger non-linearities and lead to turbulence, even though such perturbations would, in a linear flow, eventually decay. This sensitivity can be measured using the maximum transient energy growth. The linearized flow equations are discretized using spectral methods and then considered at one wave-number pair in order to obtain a model of the flow dynamics in a form suitable for advanced control design. State feedback controllers that minimize an upper bound on the maximum transient energy growth are obtained by the repeated solution of a set of linear matrix inequalities. The controllers are tested using a full Navier–Stokes solver, and the transient energy response magnitudes are significantly reduced compared with the uncontrolled cas