On differences in the equation-of-state for a selection of seven representative mammalian tissue analogue materials

Date published

2017-10-10

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1751-6161

Format

Citation

Appleby-Thomas GJ, Fitzmaurice B, Hameed A, et al., On differences in the equation-of-state for a selection of seven representative mammalian tissue analogue materials. Journal of the Mechanical Behavior of Biomedical Materials, Volume 77, January 2018, pp. 586-593

Abstract

Tissue analogues employed for ballistic purposes are often monolithic in nature, e.g. ballistic gelatin and soap, etc. However, such constructs are not representative of real-world biological systems. Further, ethical considerations limit the ability to test with real-world tissues. This means that availability and understanding of accurate tissue simulants is of key importance. Here, the shock response of a wide range of ballistic simulants (ranging from dermal (protective / bulk) through to skeletal simulant materials) determined via plate-impact experiments are discussed, with a particular focus on the classification of the behaviour of differing simulants into groups that exhibit a similar response under high strain-rate loading. Resultant Hugoniot equation-of-state data (Us-up; P-v) provides appropriate feedstock materials data for future hydrocode simulations of ballistic impact events.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s