Uncovering Drone Intentions using Control Physics Informed Machine Learning: data

Date published

2024-03-04 10:36

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

Type

Software

ISSN

Format

Citation

Perrusquia Guzman, Adolfo; Wei, Zhuangkun; Guo, Weisi; Fraser, Benjamin (2024). Uncovering Drone Intentions using Control Physics Informed Machine Learning: data. Cranfield Online Research Data (CORD). Software. https://doi.org/10.17862/cranfield.rd.25204409

Abstract

This repository provides the data and code of the paper "Uncovering Drone Intentions using Control Physics Informed Machine Learning"

Description

Software Description

Software Language

Github

Keywords

drone intentions', 'physics informed', 'reward function', 'deep learning', 'machine learning'

DOI

10.17862/cranfield.rd.25204409

Rights

Apache 2.0

Relationships

Relationships

Funder/s

UKRI Trustworthy Autonomous Systems Node in Security

Collections