Implicit large eddy simulations of turbulent flow around a square cylinder at Re=22,000
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In this paper, the Implicit Large-Eddy Simulation (ILES) is investigated on the flow around a square cylinder incorporating an unstructured Weighted Essential Non-Oscillatory (WENO) reconstruction method for a Reynolds number of 22,000. Simulations are undertaken in the framework of open-source package OpenFOAM and additional implicit 2nd/3rd-order WENO scheme on the convective term of the viscous incompressible Navier-Stokes Equations. A 2nd-order Euler implicit time integration and Pressure-Implicit Splitting-Operator (PISO) algorithm is used to for the pressure-velocity coupling. Conventional LES with Wall Adapting Local Eddy Viscosity (WALE) model is also carried out as a baseline. The results are compared to high fidelity experiment, DNS data and conventional LES with dynamic Smagorinsky model from previous work. Results show favorable performance for ILES with 3rd-order WENO scheme compared with the conventional LES with dynamic Smagorinsky model and similar performance against LES with WALE model. Results also show acceptable predictions over time-averaged statistics with less computational effort for the ILES of 2nd-order WENO scheme. Shear layer flow analysis suggests that both ILES and LES face similar challenges with small quantities, such as shear stress. Finally, simulations are capturing Von Krmn vortex, Kelvin-Helmholtz instability and induced frequency changes.