Can we model observed soil carbon changes from a dense inventory? A case study over England and Wales using three version of Orchidee ecosystem model (AR5, AR5-PRIM and O-CN)

Date published

2013-07-12T00:00:00Z

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Copernicus Publications

Department

Type

Article

ISSN

1991-959X

Format

Citation

Guenet, B., E Moyano, F., Vuichard, N., Kirk, G.J.D., Bellamy, P.H., Zaehle, S., and Ciais, P.: Can we model observed soil carbon changes from a dense inventory? A case study over england and wales using three version of orchidee ecosystem model (AR5, AR5-PRIM and O-CN), Geoscientific Model Development Discuss., Vool. 6, No.3, pages 3655-3680, doi:10.5194/gmdd-6-3655-2013, 2013.

Abstract

A widespread decrease of the top soil carbon content was observed over England and Wales during the period 1978-2003 in the National Soil Inventory (NSI), amounting to a carbon loss of 4.44 Tg yr-1 over 141 550 km2. Subsequent modelling studies have shown that changes in temperature and precipitation could only account for a small part of the observed decrease, and therefore that changes in land use and management and resulting changes in soil respiration or primary production were the main causes. So far, all the models used to reproduce the NSI data did not account for plant-soil interactions and were only soil carbon models with carbon inputs forced by data. Here, we use three different versions of a process-based coupled soil-vegetation model called ORCHIDEE, in order to separate the effect of trends in soil carbon input, and soil carbon mineralisation induced by climate trends over 1978-2003. The first version of the model (ORCHIDEE-AR5) used for IPCC-AR5 CMIP5 Earth System simulations, is based on three soil carbon pools defined with first order decomposition kinetics, as in the CENTURY model. The second version (ORCHIDEE-AR5-PRIM) built for this study includes a relationship between litter carbon and decomposition rates, to reproduce a priming effect on decomposition. The last version (O-CN) takes into account N-related processes. Soil carbon decomposition in O-CN is based on CENTURY, but adds N limitations on litter decomposition. We performed regional gridded simulations with these three versions of the ORCHIDEE model over England and Wales. None of the three model versions was able to reproduce the observed NSI soil carbon trend. This suggests that either climate change is not the main driver for observed soil carbon losses, or that the ORCHIDEE model even with priming or N-effects on decomposition lacks the basic mechanisms to explain soil carbon change in response to climate, which would raise a caution flag about the ability of this type of model to project soil carbon changes in response to future warming. A third possible explanation could be that the NSI measurements made on the topsoil are not representative of the total soil carbon losses integrated over the entire soil depth, and thus cannot be compared with the model output.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Relationships

Relationships

Supplements

Funder/s