Analysis of film cooling for a 3kN LOX/butane demonstrator engine
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Regenerative cooling has been the primary cooling method for every modern launch vehicle engine, except for the Viking: a film-cooled (with ablative throat) N2O4 / UH25 engine used on the first stage of the Ariane rockets 2-4. Despite this, film-cooling as a stand-alone cooling method has traditionally been considered insufficient for the high combustion temperatures and long burn times associated with launcher engines. This study explored the feasibility of a solely film-cooled engine at the demonstrator scale (3 kN), as a prototype for a lightweight launcher engine. A wide range of liquid oxygen (LOX)/butane engines were modelled and from this a relationship was determined to predict chamber wall temperature for a given oxidiser-to-fuel ratio (O/F), chamber pressure, and amount of film cooling. Notably, this equation was found to apply to both a 3 kN and a 30 kN engine. Numerical modelling of engine specific impulse (Isp) using this equation then found the conditions yielding optimal engine performance.