Modelling the effect of combined antimicrobials: A base model for multiple-hurdles

Date published

2017-04-14

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0168-1605

Format

Citation

Anastasiadi M, Lambert RJ, Modelling the effect of combined antimicrobials: A base model for multiple-hurdles, International Journal of Food Microbiology, Volume 252, 3 July 2017, Pages 10 – 17.

Abstract

Combining antimicrobials to reduce microbial growth and to combat the potential impact of antimicrobial resistance is an important subject both in foods and in pharmaceutics. Modelling of combined treatments designed to reduce or eliminate microbial contamination in foods (microbiological predictive modelling) has become commonplace. Two main reference models are used to analyse mixtures: the Bliss Independence and the Loewe reference models (LRM).

By using optical density to analyse the growth of Aeromonas hydrophila, Cronobacter sakazakii and Escherichia coli in combined NaCl/NaCl (a mock combination experiment) and combined NaCl/KCl experiments, previous models for combined antimicrobials in foods, based on the Bliss approach, were shown to be inconsistent and that models based on the LRM more applicable.

The LRM was shown, however, to be valid only in the specific cases where the concentration exponents of all components in a mixture were identical. This is assured for a mock combination experiment but not for a true mixture. This, essentially, invalidates the LRM as a general reference model. A new model, based on the LRM but allowing for mixed exponents, was used to analyse the combined inhibition data, and concluded that the NaCl/KCl system gave the additive effect expected from literature studies. This study suggests the need to revise current models used to analyse combined effects.

Description

Software Description

Software Language

Github

Keywords

Combination index, Synergism, Modelling, Gamma model

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s