Energy consumption optimisation for unmanned aerial vehicle based on reinforcement learning framework
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The average battery life of drones in use today is around 30 minutes, which poses significant limitations for ensuring long-range operation, such as seamless delivery and security monitoring. Meanwhile, the transportation sector is responsible for 93% of all carbon emissions, making it crucial to control energy usage during the operation of UAVs for future net-zero massive-scale air traffic. In this study, a reinforcement learning (RL)-based model was implemented for the energy consumption optimisation of drones. The RL-based energy optimisation framework dynamically tunes vehicle control systems to maximise energy economy while considering mission objectives, ambient circumstances, and system performance. RL was used to create a dynamically optimised vehicle control system that selects the most energy-efficient route. Based on training times, it is reasonable to conclude that a trained UAV saves between 50.1% and 91.6% more energy than an untrained UAV in this study by using the same map.