Multi-objective optimal parking maneuver planning of autonomous wheeled vehicles

Date published

2020-01-01

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Department

Type

Article

ISSN

0278-0046

Format

Citation

Chai R, Tsourdos A, Savvaris A, et al., (2020) Multi-objective optimal parking maneuver planning of autonomous wheeled vehicles. IEEE Transactions on Industrial Electronics, Volume 67, Issue 12, December 2020, pp. 10809-10821

Abstract

This paper proposes a computational trajectory optimization framework for solving the problem of multi-objective automatic parking motion planning. Constrained automatic parking maneuver problem is usually difficult to solve because of some practical limitations and requirements. This problem becomes more challenging when multiple objectives are required to be optimized simultaneously. The designed approach employs a swarm intelligent algorithm to produce the trade-off front along the objective space. In order to enhance the local search ability of the algorithm, a gradient operation is utilized to update the solution. In addition, since the evolutionary process tends to be sensitive with respect to the flight control parameters, a novel adaptive parameter controller is designed and incorporated in the algorithm framework such that the proposed method can dynamically balance the exploitation and exploration. The performance of using the designed multi-objective strategy is validated and analyzed by performing a number of simulation and experimental studies. The results indicate that the present approach can provide reliable solutions and it can outperform other existing approaches investigated in this paper.

Description

Software Description

Software Language

Github

Keywords

swarm intelligence, fuzzy adaptive strategy, pareto-optimal, Autonomous vehicle, overtaking trajectories, multi-objective, irregularly-placed

DOI

Rights

Attribution-NonCommercial 4.0 International

Relationships

Relationships

Supplements

Funder/s