Self play with parameter sharing in n-player mixed competitive-cooperative games
dc.contributor.author | Skaltsis, George Marios | |
dc.contributor.author | Shin, Hyosang | |
dc.contributor.author | Tsourdos, Antonios | |
dc.date.accessioned | 2022-02-16T12:22:14Z | |
dc.date.available | 2022-02-16T12:22:14Z | |
dc.date.issued | 2021-12-29 | |
dc.description.abstract | We introduce some parameter sharing multi-agent reinforcement learning schemes, combined with self-play for n-players mixed competitive-cooperative games. Except for the pure self-play scheme, an another one using the best policy, outperform the pure parameter sharing baseline, leading to better exploration of the state space and protecting from the performance deterioration observed with the baseline. | en_UK |
dc.identifier.citation | Skaltsis GM, Shin H-S, Tsourdos A. (2021) Self play with parameter sharing in n-player mixed competitive-cooperative games. In: AIAA SciTech 2022 Forum, 3-7 January 2022, San Diego, CA and Virtual Event | en_UK |
dc.identifier.uri | https://doi.org/10.2514/6.2022-2498 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/17576 | |
dc.language.iso | en | en_UK |
dc.publisher | AIAA | en_UK |
dc.rights | Attribution-NonCommercial 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Reinforcement Learning | en_UK |
dc.subject | Markov Decision Process | en_UK |
dc.subject | Statistical Distributions | en_UK |
dc.subject | Optimization Algorithm | en_UK |
dc.subject | Multi Agent System | en_UK |
dc.subject | Computer Systems | en_UK |
dc.subject | Value Function | en_UK |
dc.subject | Neural Networks | en_UK |
dc.subject | Mathematical Models | en_UK |
dc.subject | Greedy Algorithm | en_UK |
dc.title | Self play with parameter sharing in n-player mixed competitive-cooperative games | en_UK |
dc.type | Conference paper | en_UK |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Self_play_with_parameter_sharing-2021.pdf
- Size:
- 1.67 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: