NAV-Landmarks: deployable 3D infrastructures to enable CubeSats navigation near asteroids

dc.contributor.authorDi Fraia, Marco Zaccaria
dc.contributor.authorChermak, Lounis
dc.contributor.authorCuartielles, Joan-Pau
dc.contributor.authorFelicetti, Leonard
dc.contributor.authorScannapieco, Antonio Fulvio
dc.date.accessioned2020-09-01T15:40:07Z
dc.date.available2020-09-01T15:40:07Z
dc.date.issued2020-08-21
dc.description.abstractAutonomous operations in the proximity of Near Earth Objects (NEO) are perhaps the most challenging and demanding type of mission operation currently being considered. The exceptional variability of geometric and illumination conditions, the scarcity of large scale surface features and the strong perturbations in their proximity require incredibly robust systems to be handled. Robustness is usually introduced by either increasing the number and/or the complexity of on-board sensors, or by employing algorithms capable of handling uncertainties, often computationally heavy. While for a large satellite this would be predominantly an economic issue, for small satellites these constraints might push the ability to accomplish challenging missions beyond the realm of technical possibility. The scope of this paper is to present an active approach that allows small satellites deployed by a mothership to perform robust navigation using only a monocular visible camera. In particular, the introduction of Non-cooperative Artificial Visual landmarks (NAVLandmarks) on the surface of the target object is proposed to augment the capabilities of small satellites. These external elements can be effectively regarded as an infrastructure forming an extension of the landing system. The quantitative efficiency estimation of this approach will be performed by comparing the outputs of a visual odometry algorithm, which operates on sequences of images representing ballistic descents around a small non-rotating asteroid. These sequences of virtual images will be obtained through the integration of two simulated models, both based on the Apollo asteroid 101955 Bennu. The first is a dynamical model, describing the landing trajectory, realized by integrating over time the gravitational potential around a three-axis ellipsoid. The second model is visual, generated by introducing in Unreal Engine 4 a CAD model of the asteroid (with a resolution of 75 cm) and scattering on its surface a number N of cubes with side length L. The effect of both N and L on the navigation accuracy will be reported. While defining an optimal shape for the NAV-Landmarks is out of the scope of this paper, prescriptions about the beacons geometry will be provided. In particular, in this work the objects will be represented as high-visibility cubes. This shape satisfies, albeit in a non-optimal way, most of the design goals.en_UK
dc.identifier.citationDi Fraia MZ, Chermak L, Cuartielles J-P, et al., (2020) "NAV-Landmarks: Deployable 3D Infrastructures to Enable CubeSats Navigation Near Asteroids," 2020 IEEE Aerospace Conference, 7-14 March 2020, Big Sky, MT, USA, pp. 1-14en_UK
dc.identifier.issn1095-323X
dc.identifier.urihttps://doi.org/10.1109/AERO47225.2020.9172720
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/15743
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleNAV-Landmarks: deployable 3D infrastructures to enable CubeSats navigation near asteroidsen_UK
dc.typeConference paperen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NAV-Landmarks_Deployable_3D_infrastructures_to_enable_CubeSats_navigation-2020.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: