Data: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling
dc.contributor.author | Yin, Yi | |
dc.contributor.author | Tian, Yingtao | |
dc.contributor.author | Ding, Jialuo | |
dc.contributor.author | Mitchell, Tim | |
dc.contributor.author | Qin, Jian | |
dc.date.accessioned | 2024-06-07T03:31:01Z | |
dc.date.available | 2024-06-07T03:31:01Z | |
dc.date.issued | 2023-10-26 15:38 | |
dc.description.abstract | Electron beam probing data: beam characteristics of raidii at welding direction and cross-section direction. Experiments setup: 40–60 kV for the accelerating voltage, 25–45 mA for the beam current, and a welding speed of 500–700 mm/min. | |
dc.identifier.citation | Yin, Yi; Tian, Yingtao; Ding, Jialuo; Mitchell, Tim; Qin, Jian (2023). Data: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling. Cranfield Online Research Data (CORD). Dataset. https://doi.org/10.17862/cranfield.rd.24427033 | |
dc.identifier.doi | 10.17862/cranfield.rd.24427033 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/22031 | |
dc.publisher | Cranfield University | |
dc.relation.isreferencedby | https://doi.org/10.3390/s23218687' | |
dc.rights | CC BY 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 'Computational Fluid Dynamics Modelling' | |
dc.subject | 'machine learning-based' | |
dc.subject | 'Artificial neural networks' | |
dc.title | Data: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling | |
dc.type | Dataset |
Files
Original bundle
1 - 5 of 57