Data: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling

dc.contributor.authorYin, Yi
dc.contributor.authorTian, Yingtao
dc.contributor.authorDing, Jialuo
dc.contributor.authorMitchell, Tim
dc.contributor.authorQin, Jian
dc.date.accessioned2024-06-07T03:31:01Z
dc.date.available2024-06-07T03:31:01Z
dc.date.issued2023-10-26 15:38
dc.description.abstractElectron beam probing data: beam characteristics of raidii at welding direction and cross-section direction. Experiments setup: 40–60 kV for the accelerating voltage, 25–45 mA for the beam current, and a welding speed of 500–700 mm/min.
dc.identifier.citationYin, Yi; Tian, Yingtao; Ding, Jialuo; Mitchell, Tim; Qin, Jian (2023). Data: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling. Cranfield Online Research Data (CORD). Dataset. https://doi.org/10.17862/cranfield.rd.24427033
dc.identifier.doi10.17862/cranfield.rd.24427033
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/22031
dc.publisherCranfield University
dc.relation.isreferencedbyhttps://doi.org/10.3390/s23218687'
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject'Computational Fluid Dynamics Modelling'
dc.subject'machine learning-based'
dc.subject'Artificial neural networks'
dc.titleData: Prediction of electron beam welding penetration depth using machine learning-enhanced computational fluid dynamics modelling
dc.typeDataset

Files

Original bundle
Now showing 1 - 5 of 57
Loading...
Thumbnail Image
Name:
60kA,25mA (X).png
Size:
88.7 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
40kV, 25mA (X).png
Size:
88.63 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
50kV, 25mA (Y).png
Size:
88.58 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
50kV,25mA (X).png
Size:
88.56 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
60kV,30mA (X).png
Size:
88.53 KB
Format:
Portable Network Graphics