Development of an automated aircraft subsystem architecture generation and analysis tool
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Purpose – The purpose of this paper is to present a new computational framework to address future preliminary design needs for aircraft subsystems. The ability to investigate multiple candidate technologies forming subsystem architectures is enabled with the provision of automated architecture generation, analysis and optimization. Main focus lies with a demonstration of the frameworks workings, as well as the optimizers performance with a typical form of application problem. Design/methodology/approach – The core aspects involve a functional decomposition, coupled with a synergistic mission performance analysis on the aircraft, architecture and component levels. This may be followed by a complete enumeration of architectures, combined with a user defined technology filtering and concept ranking procedure. In addition, a hybrid heuristic optimizer, based on ant systems optimization and a genetic algorithm, is employed to produce optimal architectures in both component composition and design parameters. The optimizer is tested on a generic architecture design problem combined with modified Griewank and parabolic functions for the continuous space. Findings – Insights from the generalized application problem show consistent rediscovery of the optimal architectures with the optimizer, as compared to a full problem enumeration. In addition multi-objective optimization reveals a Pareto front with differences in component composition as well as continuous parameters. Research limitations/implications – This paper demonstrates the frameworks application on a generalized test problem only. Further publication will consider real engineering design problems. Originality/value – The paper addresses the need for future conceptual design methods of complex systems to consider a mixed concept space of both discrete and continuous nature via automated methods.