Physics-based prognostic modelling of filter clogging phenomena

Date published

2015-12-29

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0888-3270

Format

Citation

Omer F. Eker, Fatih Camci, Ian K. Jennions, Physics-based prognostic modelling of filter clogging phenomena, Mechanical Systems and Signal Processing, Volume 75, 15 June 2016, Pages 395-412

Abstract

In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results.

Description

Software Description

Software Language

Github

Keywords

Prognostics and health management, Physics-based modelling, Filter clogging modelling

DOI

Rights

Attribution-Non-Commercial-No Derivatives 3.0 Unported (CC BY-NC-ND 3.0). You are free to: Share — copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No Derivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
“NOTICE: this is the author’s version of a work that was accepted for publication in Mechanical Systems and Signal Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechanical Systems and Signal Processing, Vol. 75,2015, DOI: 10.1016/j.ymssp.2015.12.011”

Relationships

Relationships

Supplements

Funder/s