Reducing viral transmission through AI-based crowd monitoring and social distancing analysis

dc.contributor.authorFraser, Benjamin
dc.contributor.authorCopp, Brendan
dc.contributor.authorSingh, Gurpreet
dc.contributor.authorKeyvan, Orhan
dc.contributor.authorBian, Tongfei
dc.contributor.authorSonntag, Valentin
dc.contributor.authorXing, Yang
dc.contributor.authorGuo, Weisi
dc.contributor.authorTsourdos, Antonios
dc.date.accessioned2022-11-02T08:56:11Z
dc.date.available2022-11-02T08:56:11Z
dc.date.issued2022-10-13
dc.description.abstractThis paper explores multi-person pose estimation for reducing the risk of airborne pathogens. The recent COVID-19 pandemic highlights these risks in a globally connected world. We developed several techniques which analyse CCTV inputs for crowd analysis. The framework utilised automated homography from pose feature positions to determine interpersonal distance. It also incorporates mask detection by using pose features for an image classification pipeline. A further model predicts the behaviour of each person by using their estimated pose features. We combine the models to assess transmission risk based on recent scientific literature. A custom dashboard displays a risk density heat-map in real time. This system could improve public space management and reduce transmission in future pandemics. This context agnostic system and has many applications for other crowd monitoring problems.en_UK
dc.identifier.citationFraser B, Copp B, Singh G, et al., (2022) Reducing viral transmission through AI-based crowd monitoring and social distancing analysis. In: 2022 IEEE International Conference on Multisensor Fusion and Integration (MFI 2022), 20-22 September 2022, Cranfield University, UKen_UK
dc.identifier.eisbn978-1-6654-6026-2
dc.identifier.isbn978-1-6654-6027-9
dc.identifier.urihttps://doi.org/10.1109/MFI55806.2022.9913843
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/18634
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectsocial risk analysisen_UK
dc.subjectpose estimationen_UK
dc.subjectdistance estimationen_UK
dc.subjectmask detectionen_UK
dc.subjectbehaviour classificationen_UK
dc.titleReducing viral transmission through AI-based crowd monitoring and social distancing analysisen_UK
dc.typeConference paperen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reducing_viral_transmission-2022.pdf
Size:
793.91 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: