Generalized formulation of linear nonquadratic weighted optimal error shaping guidance laws
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This study presents a novel extension to the theory of optimal guidance laws represented by the nontraditional class of performance indices: nonquadratic-type signal Lp" role="presentation">Lp norm for the input weighted by an arbitrary positive function. Various missile guidance problems are generally formulated into a scalar terminal control problem based on the understanding of the predictor–corrector nature. Then, a new approach to derive the optimal feedback law, minimizing the nonquadratic performance index, is proposed by using the Hölderian inequality. The proposed extension allows a more general family of formulations for the design of closed-form feedback solutions to various guidance problems to be treated in a unified framework. The equivalence between the proposed approach and other design methodologies is investigated. In general, the type of input norm mainly determines the variability of input during the engagement while trading off against the rate of error convergence. The analytic solution derived in this study is verified by comparison with the solution from numerical optimization, and the effect of the exponent p" role="presentation">p in the performance index on the trajectory and command is demonstrated by numerical simulations.