A risk-based UAM airspace capacity assessment method using Monte Carlo simulation
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Inspired by risk analysis assistance service and dynamic capacity management service in U-space service, this paper investigates a risk-based UAM airspace capacity assessment method using Monte Carlo simulation for future urban air mobility. The quantitative risk assessment of the flight plan is divided into three parts: the ground / air risks of the flight plan and the mid-air collision risk between UAM. Using the comprehensive risk assessment method, this paper generates several simulation scenarios in the airspace to be evaluated in terms of the type of participants, the presence of the detect and avoid system, and the total number of participants in the airspace, conducts Monte Carlo simulations, and records the simulation data for analysis. Through the analysis of simulation data, it is found that the maximum risk of UAM in airspace increases with the increase of the number of airspace invaders and the total number of UAM. However, the maximum risk of UAM in airspace decreases when the aircraft in airspace contains the detection and avoid system with the same other conditions. Based on simulation data, this paper informatively proposes the concept of a 3D risk surface and a risk-based airspace capacity envelope, using the horizontal surface formed by a specific risk threshold to cut the 3D risk surface to form an airspace capacity envelope, which visually describes the number of aircraft that can be contained in the airspace under a specific risk threshold.