Effects of propulsion system operation on military aircraft survivability
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The recent advances in infrared (IR) weapon technology have dramatically altered the rules of air combat, leading to a consistent departure from “traditional” energy-maneuverability philosophy in aircraft design, prioritizing stealth and sophisticated armament instead. In this modern aerial warfare environment, it is obvious that new techniques need to be applied to properly assess aircraft survivability and produce successful designs for aircraft propulsion systems. The present study focuses on the development of such a methodology, which contrary to related work in the field includes considerations for both aircraft IR signature and missile/aircraft kinematic performance. An aircraft IR signature model is constructed using a collection of methods for area and temperature estimation and exhaust plume modeling; the latter is combined with missile-vs-aircraft and aircraft-vs-aircraft simulations to quantify aircraft survivability in the form of missile and aircraft lethal zones. The proposed methodology is applied to a study on propulsion system effects on aircraft survivability, in which a comparison between different engine configurations is performed: In the scenarios examined, IR signature at cruise conditions and maximum-power thrust performance are identified as key parameters for aircraft combat performance.