A rolling horizon stochastic programming approach for the integrated planning of production and utility systems

Date published

2018-09-21

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0263-8762

Format

Citation

Nur I. Zulkafli and Georgios M. Kopanos. (2018) A rolling horizon stochastic programming approach for the integrated planning of production and utility systems. Chemical Engineering Research and Design, Volume 139, November 2018, pp. 224-247

Abstract

This study focuses on the operational and resource-constrained condition-based cleaning planning problem of integrated production and utility systems under uncertainty. For the problem under consideration, a two-stage scenario-based stochastic programming model that follows a rolling horizon modeling representation is introduced; resulting in a hybrid reactive-proactive planning approach. In the stochastic programming model, all the binary variables related to the operational status (i.e., startup, operating, shutdown, under online or offline cleaning) of the production and utility units are considered as first-stage variables (i.e., scenario independent), and most of the remaining continuous variables are second-stage variables (i.e., scenario dependent). In addition, enhanced unit performance degradation and recovery models due to the cumulative operating level deviation and cumulative operating times are presented. Terminal constraints for minimum inventory levels for utilities and products as well as maximum unit performance degradation levels are also introduced. Two case studies are presented to highlight the applicability and the particular features of the proposed approach as an effective means of dealing with the sophisticated integrated planning problem considered in highly dynamic environments.

Description

Software Description

Software Language

Github

Keywords

Production planning, Cleaning, Utility system, Stochastic programming, Rolling horizon, Optimization

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s