AI-enabled interference mitigation for autonomous aerial vehicles in urban 5G networks
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Integrating autonomous unmanned aerial vehicles (UAVs) with fifth-generation (5G) networks presents a significant challenge due to network interference. UAVs’ high altitude and propagation conditions increase vulnerability to interference from neighbouring 5G base stations (gNBs) in the downlink direction. This paper proposes a novel deep reinforcement learning algorithm, powered by AI, to address interference through power control. By formulating and solving a signal-to-interference-and-noise ratio (SINR) optimization problem using the deep Q-learning (DQL) algorithm, interference is effectively mitigated, and link performance is improved. Performance comparison with existing interference mitigation schemes, such as fixed power allocation (FPA), tabular Q-learning, particle swarm optimization, and game theory demonstrates the superiority of the DQL algorithm, where it outperforms the next best method by 41.66% and converges to an optimal solution faster. It is also observed that, at higher speeds, the UAV sees only a 10.52% decrease in performance, which means the algorithm is able to perform effectively at high speeds. The proposed solution effectively integrates UAVs with 5G networks, mitigates interference, and enhances link performance, offering a significant advancement in this field.