Hybrid CoAP-based resource discovery for the Internet of Things
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Enabling automatic, efficient and scalable discovery of the resources provided by constrained low-power sensor and actuator networks is an important element to empower the transformation towards the Internet of Things (IoT). To this end, many centralized and distributed resource discovery approaches have been investigated. Clearly, each approach has its own motivations, advantages and drawbacks. In this article, we present a hybrid centralized/distributed resource discovery solution aiming to get the most out of both approaches. The proposed architecture employs the well-known Constrained Application Protocol (CoAP) and features a number of interesting discovery characteristics including scalability, time and cost efficiency, and adaptability. Using such a solution, network nodes can automatically and rapidly detect the presence of Resource Directories (RDs), via a proactive RD discovery mechanism, and perform discovery tasks through them. Nodes may, alternatively, fall back automatically to efficient fully-distributed discovery operations achieved through Trickle-enabled, CoAP-based technics. The effectiveness of the proposed architecture has been demonstrated by formal analysis and experimental evaluations on dedicated IoT platforms.