Hydrodynamic modeling of unstretched length variations in nonlinear catenary mooring systems for floating PV installations in small Indonesian Islands
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Floating photovoltaic (FPV) systems offer a promising renewable energy solution, particularly for coastal waters. This preliminary numerical study proposes a single-array pentamaran configuration designed to maximize panel installation and enhance stability by reducing rolling motion. The study investigates the effect of mooring length on the motion behavior of FPV systems and actual line tension using the Boundary Element Method (BEM) in both frequency and time domains under irregular wave conditions. The results demonstrate that the mooring system significantly reduces all horizontal motion displacements, with reductions exceeding 90%. Even with a reduction of up to 51% in the unstretched mooring length, from the original design (304.53 m) to the shortest alternative (154.53 m), the motion response shows minimal change. This is supported by RMSE values of only 0.01 m/m for surge, 0.02 m/m for sway, and 0.09 deg/m for yaw. In the time-domain response, the shortened mooring line demonstrates improved motion performance. This improvement comes with the consequence of stronger nonlinearity in restoring forces and stiffness, resulting in higher peak tensions of up to 15.79 kN. Despite this increase, all configurations remain within the allowable tension limit of 30.69 kN, indicating that the FPV’s system satisfies safety criteria.